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Abstract

Aims In spite of current medical treatment approaches, mortality of chronic heart failure (HF) remains high and novel
treatment modalities are thus urgently needed. A recent theory proposes a possible impact of the intestinal microbiome on
the incidence and clinical course of heart failure. This study sought to systematically investigate, if there are specific changes
of the intestinal microbiome in heart failure patients.
Methods and results The intestinal microbiome of 20 patients with heart failure with reduced ejection fraction due to
ischemic or dilated cardiomyopathy was investigated by applying high-throughput sequencing of the bacterial 16S rRNA gene.
Microbial profiles were compared to those of matched controls in which heart failure was ruled out by clinical assessment and
NT-proBNP serum levels (n = 20). According to the Shannon diversity index (which measures the intra-individual alpha-
diversity) based on the distribution of operational taxonomic units (OTUs), HF cases showed a nominally significantly lower
diversity index compared to controls (Pnom. = 0.01), and testing for genera abundance showed a tendency towards a decreased
alpha diversity of HF patients. Beta-diversity measures (inter-individual diversity) revealed a highly significant separation of HF
cases and controls, (e.g. Pweighted UniFracv = 0.004). Assessing the individual abundance of core measurable microbiota (CMM), a
significant decrease of Coriobacteriaceae, Erysipelotrichaceae and Ruminococcaceae was observed on the family level. In line
with that, Blautia, Collinsella, uncl. Erysipelotrichaceae and uncl. Ruminococcaceae showed a significant decrease in HF cases
compared to controls on the genus level.
Conclusions Heart failure patients showed a significantly decreased diversity of the intestinal microbiome as well as a
downregulation of key intestinal bacterial groups. Our data point to an altered intestinal microbiome as a potential player
in the pathogenesis and progression of heart failure.
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Introduction

In spite of modern treatment options, chronic heart failure
(HF) remains associated with poor prognosis and high mortal-
ity, exceeding 50% in 5 years.1 Moreover, its increasing prev-
alence leads to huge economic burden, making HF a major

challenge of the future.2 Therefore, deeper insights into the
pathophysiology of the disease are urgently needed, since
these efforts might give rise to new disease concepts and ul-
timately novel therapeutic prospects.

In this context, it has been proposed that heart failure
should not be regarded solely as a cardiac disease but rather
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a systemic multi-organ failure.3 This view might even be ex-
tended by the concept of the holobiont, defining a host and
all of its symbiotic microorganisms as a target of analytic
and therapeutic interventions. With regard to heart failure,
potential interactions between the human host and gut
microbiota have been discussed. Dysbiosis of gut bacteria
communities has been proposed to be a pathogenic factor
in several diseases, e.g. type 2 diabetes.4 Recent publications
suggest that intestinal dysbiosis may also play an important
role in the pathogenesis of heart failure, putting forward a
“gut hypothesis” of heart failure.5

Recently, it has been reported that HF is associated with
disrupted intestinal epithelial function, likely as a conse-
quence of reduced intestinal perfusion and ischemia.6,7 Bowel
wall thickness and epithelial permeability increase, whereas
absorptive function decreases.8 It has been proposed that in-
testinal bacteria and/or endotoxins such as lipopolysaccha-
rides (LPS) translocate to the systemic circulation.9 High LPS
concentrations in hepatic veins of heart failure patients are
consistent with intestinal translocation processes of gut
microbes.10 LPS levels in the blood directly correlate with
systemic inflammation in decompensated HF patients and
decrease after recompensation.6

It is well known that HF is associated with a chronic state
of inflammation,11 which might be induced or aggravated
by this pathomechanism and thereby indirectly affect cardio-
myocyte function.

Of note, an augmented intestinal juxtamucosal bacterial
biofilm has been reported in patients with HF, correlating with
an enhanced immunoglobulin A-antilipopolysaccharide re-
sponse.7,8 In patients with stable HF, intestinal overgrowth of
pathogenic bacteria like Campylobacter, Shigella, Salmonella,
and Yersinia, as well as Candida species has been observed.12

The present study aims at a first comprehensive description
of the intestinal bacterial profile in patients with acute decom-
pensated or stable HF. Gutmicrobiome data from a community-
based sample served as comparison group. Intra- and
inter-individual analysis of bacterial diversity was performed
based on high-resolution 16S rDNA sequencing.

Materials and methods

Study population

Twenty patients with HF due to frequent etiologies like ische-
mic cardiomyopathy (ICMP) and dilated cardiomyopathy
(DCM) were studied. All participants had a highly reduced left
ventricular ejection fraction (LVEF ≤ 35%). Seventy percent
were in an acute state of cardiac decompensation and 30%
in a stable state of HF. Demographic and clinical patients’
characteristics are shown in Table 1. Patients received drug
treatment according to current HF treatment guidelines,

including usage of angiotensin converting enzyme (ACE) inhib-
itors, beta-blockers, diuretic agents, aldosterone antagonists
and antiarrhythmic/heart rate (HR) modulating agents as ap-
propriate. These agents were considered in statistical analysis
as they were sorted and examined in groups defined by their
mechanism of action. Further medication was classified into
groups defined by their indication. Three participants did
not receive any drugs at the time of inclusion.

Exclusion criteria included acute infection, gastrointestinal
diseases or malabsorptive disorders, antibiotic or probiotic
treatments within the previous three months and cancer.
Any other diseases like respiratory disease, apoplexia cerebri
and migraine that could possibly influence the intestinal
microbiome, were not significantly prevalent in both groups.
All patients consumed a mixed European diet. To minimize
confounding effects of hospital surrounding, diet and contact
to other patients, we collected faecal samples within the first
24 hours after admission to hospital.

The control group consisted of twenty case-matched indi-
viduals (matched in terms of age, gender, body mass index
(BMI) and smoking status) from a community-based sample,
free of any heart and/or gastrointestinal disease as well as
of cancer. According to the recent ESC guidelines on the diag-
nosis of heart failure,13 we defined the control group on the

Table 1 Characteristics of HF patients and controls

HF Patients (n=20) Controls (n=20) P-value

Age, y 65 ± 3,17 65 ± 3,07 0,941
Men/women 11/9 11/9 1,000
BMI, kg/m2 29,7 ± 1,44 29,1 ± 1,33 0,768
Smoking habits 0,733

never 11 11
in the past 7 7
current 2 2

HF aetiology ICMP 55%
DCM 45%

LVEF, % 22,3 ± 2,85 NM
CRP, mg/L 11,1 ± 2,06 4,22 ± 1,12 (n=15) 0,006
NT-proBNP, ng/L 6564,5 ± 1187,23 109,2 ± 45,91 (n=17) <0,001
NYHA class

I 1
II 4
III 6
IV 9

Medication
Beta-blockers 80% 15% <0,001
Diuretics 70% 35% 0,027
ACE-inh/ARBs 70% 35% 0,027
Ald-ags 40% 15% 0,081

Comorbidities
DM type II 35% 15% 0,152
HTN 70% 40% 0,059

ACE-inh, angiotensin-converting-enzyme inhibitors; ARBs, angio-
tensin receptor blockers; Ald-ags, aldosterone antagonists; BMI,
body mass index; CRP, C-reactive protein; DCM, dilated cardiomy-
opathy; DM, diabetes mellitus; HF, heart failure; HTN, arterial hy-
pertension; ICMP, ischemic cardiomyopathy; LVEF, left ventricular
ejection fraction; NM, not measured; NT-proBNP, N-terminal of
the prohormone brain natriuretic peptide; NYHA, New York Heart
Association; SEM, standard error of mean; NM, not measured.
Values are % or mean ± SEM.
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basis of prior diagnoses, the absence of HF related clinical
signs and symptoms as well as NT-proBNP measurements.
Any medication of subjects from the control group has been
considered in statistical analysis. Individuals were obtained
from the PopGen biobank.14,15

The study was performed at the University Medical Centre
Schleswig-Holstein, Campus Kiel, Germany after approval by
the local ethics committee. All study participants gave their
written, informed consent.

Study protocol and clinical assessment

In HF patients, body height and weight, systolic and dia-
stolic blood pressure and body temperature were mea-
sured by clinical staff and obtained from medical records.
Blood samples were obtained by nurses or physicians. In
the control sample, blood pressure, height and weight were
determined by trained study nurses following a standard-
ized protocol.

Body mass index (BMI) was calculated as weight/height.2 A
standardised survey on pre-existing illnesses, dietary habits
and several lifestyle factors was completed by all patients
and controls and a standardised interview was performed.
In HF patients, cardiac function was evaluated by transtho-
racic Doppler echocardiography according to current guide-
lines. All imaging studies were judged by an experienced
cardiologist unaware of the study protocol and archived
digitally.

In HF patients, faecal samples were collected in standard
stool collection tubes within the first 24 hours after admis-
sion to hospital and stored at �80°C until further processing.
Control participants collected faecal samples at home in stan-
dard stool collection tubes. The samples were shipped imme-
diately (within 24 hours) at RT and were also stored at �80°C
until processing.

DNA extraction, 16S rDNA sequencing and quality
control

DNA was extracted using the QIAcube and the QIAamp
DNA stool kit (Qiagen) and a prior beat-beating step. Vari-
able regions v1-v2 of the 16S rRNA gene were amplified
using the primers described in Caporaso et al.16 PCR prod-
ucts were normalized using the SequalPrep Normalization
Plate Kit (Life Technologies), pooled based on Qubit dsDNA
BR Assay Kit measurements (Thermo Fisher) and sequenced
on an Illumina MiSeq (2 × 300 bp). Demultiplexing was based
on zero mismatches in the barcode sequences. Forward and
reverse reads were merged using FLASh software allowing an
overlap of the reads between 250 and 300 bp.17 Sequences
with a sequences quality below 30 in less than 95% of the

nucleotides as well as chimeras were removed using
UCHIME.18

Dataset generation

After quality control unique sequences from all samples were
combined and de novo OTU picking was performed with
Usearch19 (v7, Edgar). For each sample, 10 000 random se-
quences were picked to construct the OTU abundance table.
The OTU sequences were aligned using Muscle20,21 and from
the alignment a Maximum-Likelihood Phylogenetic Tree was
constructed using a generally time-reversible model in
FastTree.22,23 Using this tree and the OTU abundance table
unweighted and weighted UniFrac24 and phylogenetic diver-
sity25 were calculated using the unifrac.unweighted, unifrac.
weighted and phylo.diversity function, respectively, in
Mothur.26 Further, these sequences were taxonomically an-
notated using the RDP classifier27 and most recent Training
Set provided on the RDP website (v14; https://rdp.cme.
msu.edu/). The taxonomic information was used to construct
abundance tables on different taxonomic levels from phylum
to genus. Genera with a classification score lower than 0.8
were assigned to the corresponding group named ‘unclassi-
fied [family]’.

Statistical analysis

Statistical analysis was carried out in R.28 Alpha-diversity
measures and Bray-Curtis dissimilarities were calculated
using the respective functions of the VEGAN package29 for
R. When testing for differences in alpha-diversity, Wilcoxon
rank sum test was used when value distribution deviated
from normality, two samples T-test was used when not. Un-
constrained MDS plots of beta diversity measures were
generated using the cmdscale function in R. To test for dif-
ferences in beta diversity, permutational MANOVA was per-
formed using the adonis function of the VEGAN package
with the option sqrt.dist=T when using abundance tables,
but not when using UniFrac distances, and 10 000 permu-
tations. The best fitting ordination model was calculated
using db-RDA (capscale) and the respective distance matri-
ces. AIC was used to select the best fitting model adding
single a single explanatory variable to a model correcting
for age, gender, BMI and smoking habits. F-statistics and
P-values were calculated using anova.cca to compare the
model with and without the added variable.
Enrichments/depletions of taxonomic groups were calcu-
lated on a core-measurable microbiota (CMM). In the
CMM we included all taxonomic groups having a mean
abundance of at least 1% (0.5% for OTUs) in one of the
groups. Additionally for OTUs, the OTU had to be present
in at least 40% of the samples. Model fitting and
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calculations were performed using the manyglm and anova.
manyglm functions from the mvabund package,30 using a
negative binomial distribution. For the ANOVA, the number
of permutations was set to 10 000 and permutation of re-
siduals was used as resampling method, age, gender, BMI
and smoking habits were used as covariates. Correction
for multiple testing was done by applying Benjamini–
Hochberg correction.31

Results

Differences between HF cases and controls with
regard to alpha and beta diversity

With regard to alpha diversity, reflecting intra-individual bac-
terial variance, the Shannon diversity index based on OTU dis-
tribution showed a nominally significantly lower diversity
index in HF cases compared to controls (Pnom. = 0.01192;
Figure 1A). Indices based on genera abundance showed a ten-
dency of decreased diversity as well, but these differences

were not statistically significant upon correction for multiple
testing (data not shown).

Assessment of beta diversity (PerMANOVA), a parameter
which represents inter-individual variances, showed a signifi-
cant separation of HF cases and controls after adjustment for
gender, age, BMI and smoking habits on Bray-Curtis dissimi-
larity based on genera abundance (explained variance
R2 = 5.5%, P = 0.0124,) as well as OTU abundance (R2 = 3.9%,
P = 0.0099) and in the weighted UniFrac analysis (R2 = 8.3%,
P = 0.0043; Figure 1B). These results provide evidence for a
shift in the community composition of the gut microbiota in-
duced by heart failure. No significant differences were found
using the unweighted UniFrac distance metric in this analysis.
Of note, none of the additional explanatory variables in-
cluded in the distance-based RDA yielded better results than
the discrimination between HF cases and controls.

Figure 2 gives an overview of the abundances of the core-
measurable microbiota (CMM) for the control group and the
group of HF patients (Fig. 2A), as well as for each individual in
each of the groups (Fig. 2B).

When looking at families, genera and OTUs contributing to
the differences between HF cases and controls in a
GLM-based model, Coriobacteriaceae, Erysipelotrichaceae
and Ruminococcaceae showed a significant decrease in HF
cases compared to controls (Table 2). Furthermore, Blautia,
Collinsella, uncl. Erysipelotrichaceae and uncl.
Ruminococcaceae showed a significant decrease in HF cases
compared to controls on genus level. Escherichia/Shigella
were enriched in HF cases, but this signal did not pass the
correction for multiple testing (Table 2, Figure 3). The analysis
on OTU basis revealed only nominally significant values in
bacterial abundance, however reflecting the findings on ge-
nus and family level (Table 2, Figure 3).

Differences in the stool microbiome within HF
cases

To investigate whether certain variables are associated with
inter-individual variation of the gut microbial community in
HF, the PerMANOVA (adonis) approach was applied to the
HF cases, testing all available clinical factors (gender, age,
BMI, systolic and diastolic blood pressure, aetiology of HF,
LVEF ≤ or > 20%, NYHA class, serum levels of NT-proBNP
and CRP, medication and smoking habits) for significant associ-
ation with genus and OTU composition. None of the variables
showed a significant influence on the overall composition.

Discussion

In the present study, we sought to assess the composition
and structure of the intestinal luminal microbiota in patients

Figure 1 (A) Alpha diversity: Shannon Index based on OTU abundance
for controls and HF patients. (B) Beta diversity: PCoA plot of weighted
UniFrac distances.
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with heart failure due to typical aetiologies like ICMP and
DCM, using non-invasively obtainable faecal samples. Fur-
thermore, we compared the stool microbiome of HF patients
to a community-based control sample from the same geo-
graphical area, with each control being matched to a case,
based on age, gender, body mass index, and smoking behav-
iour. The microbiome data of our control group were

consistent with available previous research on “normal” gut
microbiome constellation.32,33

To our knowledge, this is the first systematic analysis of the
intestinal bacterial microbiota of HF patients using high-
throughput sequencing of bacterial 16S rRNA gene sequences.
Our analysis revealed distinct differences in HF patients as
compared to controls with respect to the abundance of

Figure 2 Genus level abundances of CMM for controls and HF cases. (A) Mean relative abundances of the two groups. (B) Relative abundances for the
individual samples.

Table 2 Significant bacteria on family, genus and OTU level based on a GLM model

Bacteria P-value Padjust. % HF cases % controls

Families
Coriobacteriaceae 0.0002 0.0030 0.59 1.77
Erysipelotrichacea 0.0006 0.0045 1.06 2.38
Ruminococcaceae 0.0054 0.0270 20.37 28.38

Genera
Blautia 9.99e-05 0.0023 0.40 1.70
Collinsella 0.0082 0.0472 0.33 1.14
Escherichia/Shigella 0.0137 0.0630 3.19 1.34
Faecalibacterium 0.046 0.178 5.08 9.02
Uncl. Erysipelotrichaceae 0.0017 0.0196 0.72 1.71
Uncl. Ruminococcaceae 0.0081 0.0472 9.60 14.17

OTUs (no.)
Bacteroides (1) 0.0430 0.2311 5.38 2.66
Uncl. Enterobacteriaceae (4) 0.0357 0.2311 2.74 0.99
Lachnospiraceae inc.
Sedis (14)

0.0031 0.0666 0.43 1.85

Faecalibacterium (24) 0.0106 0.1040 0.87 2.36
Colinsella (33) 0.0021 0.0666 0.05 0.99
Uncl. Erysipelotrichaceae (62) 0.0121 0.1040 0.22 0.56
Uncl. Ruminococcaceae (65) 0.0411 0.2311 0.21 0.65
Faecalibacterium (1490) 0.0072 0.1032 0.90 2.15

(Number) corresponds to the OTU_number.
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taxonomic groups on the family to OTU level. These changes
were also reflected in differences in beta diversity measures.
In addition, a trend of reduced bacterial alpha diversity was
observed in HF patients compared to controls.

Analysing intestinal bacterial profile, we could not detect a
significantly enhanced abundance of particular (potentially
pathogenic) bacteria on OTU level, questioning an infectious
disease theory. Instead, observed shifts on family and genus
level suggest functional adaptation to altered environmental
conditions.

A recent study based on culture dependent methods dem-
onstrated an intestinal enrichment of potential pathogenic
bacteria, such as Campylobacter, Shigella, Salmonella, and
Yersinia enterocolitica, and Candida species in HF patients.12

In line with these results, we could demonstrate an increase
of Enterobacteriaceae in HF patients, especially belonging to
the Escherichia/Shigella cluster, using culture-independent
high-throughput amplicon sequencing data. However, these
results did either not meet the significance threshold
(Enterobacteriacea) or did not pass the correction for multi-
ple testing (Escherichia/Shigella).

Rather than enrichment, we could show a significant de-
crease of other families and genera in HF patients. Our study
illustrates changes in bacterial diversity mainly driven by sig-
nificant depletion of the bacterial genera Blautia and
Collinsella, as well as two unknown genera belonging to the
families Erysipelotrichaceae and Ruminococcaceae. This con-
stellation seems to be a specific attribute of heart failure, as
there is no other disease entity reported to be accompanied
by this alteration. It is conceivable that depletion of these
genera contributes to HF pathogenesis, as recent findings
from other inflammatory diseases suggest: For example,
Collinsella bacteria have been reported to be associated with
systemic atherosclerosis and type 2 diabetes mellitus
(T2DM).34,35 Interestingly, this genus seems to be enriched

in patients suffering from atherosclerosis or T2DM, whereas
we could demonstrate its depletion in HF patients. Remark-
ably, Collinsella was also downregulated in HF patients suffer-
ing from DM or ischemic heart disease. Thus, the
downregulating effects of HF seem to overweigh opposing ef-
fects of these comorbidities in our patients. Therefore, we
conclude that the depletion of Collinsella may be highly
specific to HF. Moreover, recent research demonstrated that
Blautia might be associated with anti-inflammatory mecha-
nisms, as its intestinal abundance is associated with reduced
death and improved overall survival in Graft-versus-Host-
Disease.36 Furthermore, a reduction in the butyrate-
producing genus Faecalibacterium is observed in HF patients.
Faecalibacterium prausnitzii was identified as an anti-
inflammatory commensal and reduced abundance in species
belonging to this genus were shown to have an adverse effect
on intestinal permeability.37,38 These interesting findings out-
line that further in vitro studies need to be performed to fur-
ther assess the functional role of these genera in heart
failure.

Discussing possible confounders, multiple external factors
(e.g. food intake, medical drug usage, environmental sur-
rounding) and internal factors yield influence on the gut
microbiome balance, possibly contributing to the observed
effects. We intended to minimize the impact of dietary habits
(e.g. high-fat diets) by excluding patients consuming
unbalanced nutrition, although individual effects of nutrition
cannot be excluded, as acute decompensated patients
followed no standardized diet. Patients’ medication has been
considered in the statistical analyses.

Equally probable, internal changes due to HF may affect
intestinal bacterial profile. For example, it is well known
that HF is associated with a chronic state of inflamma-
tion11,39 and the intestinal microbiome might not only be
addressed as a target of systemic inflammation, but also

Figure 3 Taxonomic groups of CMM (family to OTU level) found with different abundances between HF cases and controls. ns: not significant
(P> 0.05), *: P< 0.05, **: P< 0.01, ***: P< 0.001. P-values before and after correction for multiple testing are separated by the slash character.
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as a trigger for this pathomechanism. Of note, this linkage
has been proposed in several other inflammatory diseases
such as rheumatoid arthritis.40 Due to systemic inflamma-
tion, intestinal epithelial dysfunction and ultimately in-
creased permeability possibly give rise to new
immunogenic epitopes that induce increased autoantibody
production and further activate inflammatory pathways, ag-
gravating the primary inflammatory disease.41 It appears
possible, that this concept of the intestine acting as a “per-
colator” of systemic inflammation, might also be function-
ally relevant in heart failure.

In addition to systemic inflammation, impaired fluid
balance in HF patients might be important, worsening bowel
perfusion, and causing hypoxemia and epithelial dysfunc-
tion. Effectively reduced bowel motility entails the intestinal
content (bacteria and food components) to stay longer in
the gut and thereby modifies bacterial supply of energy
substrates possibly inducing a bacterial shift.42 To a certain
degree, diuretic agents might modulate this effect. Since
we could not exclude these agents in our study, as they
are essential part of current treatment guidelines, we exam-
ined their effects on gut bacterial diversity, which did not
yield a significant association between use of diuretics and
composition of the gut microbiome.

All of these structural and functional changes may jointly
affect the bacterial habitat (e.g. by oxygen availability, pH
value, immunological competence), constraining dynamic ad-
justments of bacterial colonisation. Potential consequences
might either be induced by the enrichment of pathogen ef-
fectors (e.g. bacteria, bacterial toxins, metabolic products,
immune modulation) or the relative repression of beneficial
bacteria in the compounded balance.

The current general opinion favours the concept that
intestinal imbalance arises as a consequence of cardiac
dysfunction. However, a functional relevance of an impaired
and/or altered bacterial profile as a primary risk factor or
early disease marker for the initial onset of heart failure
seems to be conceivable as well. Of note, recent studies have
shown that intestinal bacterial-dependent generated
trimethylamine-N-oxide (TMAO) levels in blood are a prog-
nostic factor for long-term mortality risk in HF patients inde-
pendent of traditional risk factors and indices.43,44 In our
study we focused on HF patients mostly in an acute state of
decompensation. Future studies may assess if alterations of
disease status during the progression of heart failure are mir-
rored by alterations of intestinal gut microbial composition,
similar to e.g. Crohn’s disease.45

Overall, significant decreases of bacterial families and gen-
era indicate a complex multifactorially induced remodelling
of the intestinal bacterial structure rather than an over-
growth of certain genera. Of note, this mechanism may not
be a unique feature of heart failure but has been demon-
strated in other widespread diseases as well, like diabetes
and chronic kidney disease. However, the pattern of depleted

genera Blautia and Collinsella, as well as two unknown gen-
era belonging to the families Erysipelotrichaceae and
Ruminococcaceae seems to be HF specific and may even offer
the basis for novel specific therapies in the future.

Conclusions

In this study, we could show that significant structural
alterations of the intestinal bacterial microbiome can be
found in HF patients. It seems possible that altered bacterial
gut colonisation, most likely the depletion of distinct core
intestinal microbiota, acts as a risk factor and disease marker
for HF, enhancing disease progression in a vicious cycle.
Future studies should focus on the pathomechanisms
involved, e.g. altered inflammatory pathways.

Limitations

Our results are based on relatively small group sizes. Further
largescale studies are necessary to prove our findings.

Furthermore, since the recent concept of advanced heart
failure proposes a transition to multi-organ failure when
reaching critical disease status,13 we cannot exclude that multi-
ple factors occurring at this stage might superimpose the spe-
cific alterations we observed in heart failure patients, e.g.
accompanying kidney failure, prolonged treatment on
intensive care units, hospital acquired infections and repeti-
tively required antibiotic therapy. Further longitudinal studies,
that evaluate alterations of the intestinal microbiome during
the course of disease, may help to better separate primary
heart failure-specific alterations from these possible biases.
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